Search results for "Polarizable Continuum Model"
showing 10 items of 31 documents
Ring splitting of azetidin-2-ones via radical anions
2012
The radical anions of azetidin-2-ones, generated by UV-irradiation in the presence of triethylamine, undergo ring-splitting via N-C4 or C3-C4 bond breaking, leading to open-chain amides. This reactivity diverges from that found for the neutral excited states, which is characterised by alpha-cleavage. The preference for beta-cleavage is supported by DFT theoretical calculations on the energy barriers associated with the involved transition states. Thus, injection of one electron into the azetidin-2-one moiety constitutes a complementary activation strategy which may be exploited to produce new chemistry.
Attachment of chloride anion to sugars: mechanistic investigation and discovery of a new dopant for efficient sugar ionization/detection in mass spec…
2012
International audience; A new method for efficient ionization of sugars in the negative-ion mode of electrospray mass spectrometry is presented. Instead of using strongly hydrophobic dopants such as dichloromethane or chloroform, efficient ionization of sugars has been achieved by using aqueous HCl solution for the first time. This methodology makes it possible to use hydrophilic dopants, which are more appropriate for chromatographic separation techniques with efficient sugar ionization and detection in mass spectrometry. The interaction between chloride anions and monosaccharides (glucose and galactose) was studied by DFT in the gas phase and by implementing the polarizable continuum mode…
Dependence of the Substituent Effect on Solvent Properties
2018
The influence of a solvent on the substituent effect (SE) in 1,4-disubstituted derivatives of benzene (BEN), cyclohexa-1,3-diene (CHD), and bicyclo[2.2.2]octane (BCO) is studied by the use of polarizable continuum model method. In all X–R–Y systems for the functional group Y (NO2, COOH, OH, and NH2), the following substituents X have been chosen: NO2, CHO, H, OH, and NH2. The substituent effect is characterized by the charge of the substituent active region (cSAR(X)), substituent effect stabilization energy (SESE), and substituent constants σ or F descriptors, the functional groups by cSAR(Y), whereas π-electron delocalization of transmitting moieties (BEN and CHD) is characterized by a geo…
Anharmonic vibrational frequency calculations for solvated molecules in the B3LYP Kohn–Sham basis set limit
2012
Abstract The solvent dependence of harmonic and anharmonic vibrational wavenumbers of water, formaldehyde and formamide was studied using the B3LYP method. The results obtained with the hierarchy of Jensen's polarization-consistent basis sets were fitted with two-parameter formula toward the B3LYP Kohn–Sham complete basis set (CBS) limit. Anharmonic corrections have been obtained by a second order perturbation treatment (VPT2) and vibrational configuration interaction (VCI) method. The solvent environment was treated according to the self-consistent reaction field polarizable continuum model (SCRF PCM) approach.
The domino reaction between 4,6-dinitrobenzofuroxan and cyclopentadiene. Insights on the nature of the molecular mechanism
2004
Abstract The molecular mechanism of the domino reaction between 4,6-dinitrobenzofuroxan, 1 , and cyclopentadiene, Cp, to give the adduct 11 is examined through density functional theory (DFT) calculations at B3LYP/6-31G* level. This domino reaction comprises two consecutive formally [4+2] cycloadditions. The first one is a two-center addition initialized by the nucleophilic attack of Cp to the more electrophilic center of 1 . The subsequent cyclization can take place along two competitive channels associated to the formation of a second C–C bond yielding the formally [2+4] cycloadduct 9 , or a C–O bond yielding the formally [4+2] cycloadduct 10 . The second cycloaddition is a stepwise proce…
Ligand dynamics of tert-butyl isocyanide oxido complexes of molybdenum(IV).
2014
The six-coordinate molybdenum(IV) oxido isocyanide complex 1 [Δ,Λ-OC-6-2-3-[MoO(N(p)∩N(i))2(CN(t)Bu)]; N(p)∩N(i) = 4-tert-butylphenyl(pyrrolato-2-ylmethylene)amine] is obtained in diastereomerically pure form in the solid state, as revealed by single-crystal X-ray diffraction. In solution, this stereoisomer equilibrates with the Δ,Λ-OC-6-2-4 diastereomer 2 at ambient temperature. The stereochemistry of both isomers has been elucidated by NMR, IR, and UV/vis spectroscopy in combination with density functional theory (DFT)/polarizable continuum model and time-dependent DFT calculations. The isomerization 1 → 2 is suggested to proceed via a dissociative trigonal twist with dissociation of the …
Toward an Understanding of the Molecular Mechanism of the Reaction between 1-Methylpyrrole and Dimethyl Acetylenedicarboxylate. An ab Initio Study
1998
The molecular mechanism for the reaction between 1-methylpyrrole and dimethyl acetylenedicarboxylate (DMAD) has been studied using ab initio methods. Two alternative reaction pathways have been considered, both of which correspond to stepwise processes with initial, rate-determining formation of a common zwitterionic intermediate. This intermediate is formed by nucleophilic attack of the pyrrole ring to the carbon−carbon triple bond of DMAD. Closure of this intermediate (pathway A) affords a [4 + 2] cycloadduct, whereas intramolecular proton transfer (pathway B) affords a Michael adduct. The much larger potential energy barrier of the second step in pathway B relative to pathway A is respon…
Theoretical study on the molecular mechanism of the [5 + 2] vs. [4 + 2] cyclization mediated by Lewis acid in the quinone system
2013
[EN] The thermal and Lewis acid (LA) catalyzed cyclizations of quinone 1 involved in the synthesis of Colombiasin A and Elipsaterosin B have been theoretically studied using DFT methods at the B3LYP/6-311G(d,p) computational level. B3LYP calculations suggest that the formal endo [4 + 2] cycloadduct allowing the synthesis of Colombiasin A is preferentially formed under thermal conditions, while in the presence of the BF3 LA catalyst the formal [5 + 2] cycloadduct is seen, allowing the synthesis of Elipsaterosin B. The BF3 LA catalyst not only accelerates the nucleophilic attack on the C2 carbon of the quinone framework through a more polar C-C bond formation, but also provokes a different el…
Spectroscopic and Theoretical Study of the Grafting Modes of Phosphonic Acids on ZnO Nanorods
2013
Metal oxides are versatile substrates for the design of a wide range of SAM-based organic-inorganic materials among which ZnO nanostructures modified with phosphonic SAM are promising semiconducting systems for applications in technological fields such as biosensing, photonics, and field-effect transistors (FET). Despite previous studies reported on various successful grafting approaches, issues regarding preferred anchoring modes of phosphonic acids and the role of a second reactive group (i.e., a carboxylic group) are still a matter of controversial interpretations. This paper reports on an experimental and theoretical study on the functionalization of ZnO nanorods with monofunctional alk…
Translocation versus cyclisation in radicals derived from N-3-alkenyl trichloroacetamides
2011
Under radical reaction conditions, two different and competitive reaction pathways were observed for N-(alpha-methylbenzyl)trichloroacetamides with a N-3-cyclohexenyl substituent: 1,4-hydrogen translocation and radical addition to a double bond. However, for radicals with an acyclic alkenyl side chain, the direct cyclisation process was exclusively observed. The dichotomy between translocation and direct radical cyclisation in these substrates has been theoretically studied using density functional theory (DFT) methods at the B3LYP/6-31G** computational level.